
PP 2.5
Parallelization of 2-D and 3-D depth migration
J. Amundsen, Norwegian University of Science and Technology; B. Arntsen, A. Sollid, Statoil
Research Centre; A. Buland, and R. Sollie*, IKU Petroleum Research

Summary

We have ported serial codes for 2-D and 3-D seis-
mic depth migration to parallel platforms. The
porting was done using portable parallel primi-
tives, such that the same code can be run on a.
number of parallel machines, workstation clusters,
as well as serial machines. Only small modifica-
tions of the serial codes were necessary. Efficient
parallel codes were obtained with moderate mod-
ification of the serial codes.

Introduction

Downward continuation of seismic wavefields is
one of the most widespread techniques for post-
stack and pre-stack seismic imaging. Almost all
3-D poststack and 2-D prestack depth migration
techniques, routinely in use today, rely upon the
method of downward continuation in which the
recorded wavefield is lowered to everdeeper record-
ing planes by wavefield extrapolation.After a
temporal Fourier transform of the recorded data,
the downward-continuation can be performed in-
dependently on constant frequency -lines/-slices.
These computations can proceed in parallel with
a minimum of communication. Hence, the scheme
is well suited for parallel processing. The actual
codes used in this project are described by Sollid
and Arntsen (1994)and Mittet et al. (1994).

When the seismic industry is looking for a l000-
fold speedup over current performance, parallel
seismic processing is a very rational choice. The
cost of parallel computers is decreasing and their
performance as well as their stability is increasing
rapidly. Also, by running many high-performance
workstations in parallel, one may achieve speeds
comparable to those of supercomputers, at higher
performance-to-cost ratio.

Parallelization strategies

Parallelization of the depth migration codes were
performed using a SPMD (Single Program - Mul-
tiple Data) approach.Within this approach one
node has a particular responsibility to read input
parameters, distribute them to the other nodes,
synchronize the execution, and collect and han-

dle results in the end. We have in this work im-
plemented a parallelization over frequency, where
each processor is assigned particular set of fre-
quencies. The processors will access the corre-
sponding data, perform the depth migration and
send their individual contributions back to the
node that collects the data and constructs the final
image.

A common strategy is chosen for the paralleliza-
tion of the 2-D and 3-D codes. With the 2-D code,
frequencies are distributed in blocks between pro-
cessors to optimize I/O operations.For the 3-
D code, the frequencies to be migrated are dis-
tributed cyclically among the processors. in a
round-robin. This is necessary because of load bal-
ancing considerations, since the number of floating
point operations increase monotonically with fre-
quency. Also, because of the larger amounts of I/O
within the 3-D code, I/O optimization by blocking
frequencies is not an issue.

The actual frequency migration step consumes 97-
99% of the total CPU time, depending of the sys-
tem used. This makes the strategy of paralleliza-
tion over frequency very efficient at low to mod-
erate aggregate I/O requirements. With larger

(i.e. 3-D) data sets and/or larger numbers of
processors,aggregate I/O requirements becomes
a significant part of the total wall clock execu-
tion time. Hence, asynchronous I/O and parallel
file systems become important issues, allowing to
overlap I/O and computations, and to distribute
the I/O operations onto several (striped) disk sub-
systems. Within the 2-D and 3-D codes, a small
portable library for doing asynchronous I/O from
C and Fortran has been developed. The library
is ported to Intel Paragon, CRAY systems, the
Parsytec GCpp, and workstation systems support-
ing POSIX asynchronous I/O (e.g. DEC, IBM and
SGI).

With very large data sets, the ability to share fre-
quency planes among processors becomes impor-
tant to be able to store the entire plane into mem-
ory. The most efficient scheme of decomposing
a plane in general is decomposition by 2-D sub-
squares. This minimizes the surface-to-volume ra-

1001

D
ow

nl
oa

de
d

07
/2

6/
15

 to
 8

4.
49

.2
11

.4
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

Parallel 2-D and 3-D depth migration

3-D Code Also for the 3-D code, two test cases
were generated. Specifications of the two test
cases are given in Table 2. Case 1 was the impulse
response test, computed on a grid measuring 256
x 256 x 256 grid points in the inline-, crossline-
and depth-directions respectively. The computa-
tional effort of the problem scales, basically, lin-
early with the number of frequencies and linearly
in each of the three spatial coordinates. The in-
put to the test is an impulse, while the output is
an image of a half sphere. Case 2 was a real data
test computed on a grid measuring 440 x 460 x
320 gridpoints in the inline-, crossline- and depth-
directions respectively. The input data consists of
stacked seismic data from the North Sea, which
was originally used for initial 3-D interpretation
of a discovery.

Results and discussion

The results for Case 1 for the 2-D code is presented
in Table 3. A program running on p processors
with an execution time Tp will have a speedup

The speedup for the CRAY T3D scales very
well with the number of processors, whereas the
Parsytec scales poorly for this example. De
spite a sequential speed, twice as fast as the Intel
Paragon, at 32 nodes the execution time is about
the same. On the other hand, the Paragon drops
in speedup and efficiency when using more than
30 processors. The reason is that the performance
is limited by I/O. The Paragon has 3 I/O nodes.
When running on 56 nodes, each I/O node will
serve about 19 processors. Ideally, this number
should not be above 8-10 computational nodes per
I/O node.

Table 2: Benchmarking specification for the 9-D code

 =

Table 3: Benchmarking results for Case 1 of the 2-D
code

In Table 4 we. show the corresponding results for
Case 2. The SP2 shows basically the same speedup
for Case 1 and Case 2. However for the Parsytec
we find that the speedup has improved signifi-
cantly.

Fig. 2: A migrated section for Case 2 of the 3-D code.

The results for the 3-D code are presented in Table
5. Note here that the execution time on few nodes
was too long to be measured. Consequently, the
speedup figures marked with a star are therefore
in this case related to the execution time on four
nodes as follows:

1002

D
ow

nl
oa

de
d

07
/2

6/
15

 to
 8

4.
49

.2
11

.4
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

Parallel 2-D and 3-D depth migration

tio and hence the overall message traffic during the
convolution step. However, for efficient parallel
I/O we need large contiguous and preferably page
aligned segments in memory. As a compromise, we
have chosen sharing by partitioning the frequency
plane into 1D slices among processors. This gives
more message traffic within the convolution step,
but avoids a separate collective buffering step with
additional memory lost to buffering space before
writing migrated images to disk. Notice that with
the benchmark data sets and the parallel systems
used, there has been no need for sharing frequency
planes among processors.

tributed memory, and 8 nodes were used. The
nodes have a memory rate capacity of 2130 MB/s.
The maximum communication rate has empiri-
cally been measured to 35 Mb/s, with the mini-
mum network latency of 52 microseconds, between
two arbitrary processors.

Description of test cases

Message passing

Message passing is still the most popular parallel
programming paradigm even with the presence of
the HPF standard. With the availability of the
MPI standard in freely available source code and
in optimized vendor libraries, portability of MP-
programs has improved significantly.

2-D Code The benchmarking was performed on
data from two test cases. Specifications of both
test cases are given in Table 1. Synthetic data for
Case 1 was modeled, corresponding to a 1.5 km
streamer in a model of length 3.2 km and depth
2.56 km. The experiment consists of only 12 shots.
Correspondingly, for Case2 we used data from a
2.5 km streamer in a model of length 6.0 km and
depth 2.7 km. This is a model of reasonable size.
The experiment consists of 120 shots. Each shot
is, however, independent from the others, so the
computing time will scale linearly with the number
of shots.

However, to enable the use of more efficient low
level vendor-specific MP-routines, a generalized
communications package was developed. This in-
terface mapped closely to the basic MP-calls of
the MPI and PVM API’s, In addition, it allowed
for the use of vendor specific libraries by setting
flags at compile time. Also, a sequential an paral-
lel code was easily maintained without duplicating
source, because all of the MP-code was left out at
compile time by omitting any MP defines.

Benchmarking Table 1: Benchmarking specification for the 2-D code

The two platforms chosen for this project are the
Parsytec GC/PowerPlus and IBM SP2. We have
also run some tests on the Intel Paragon machine,
and the Cray T3D.

The Parsytec GCpp to be used in this project is
a MIMD computer with distributed memory, and
64 processors. Each node has a memory capacity
of 64 Mb. If using more than 32 processors, one
or more processor will have to share a 64 Mb node
board, reducing the physically available processor
memory to 32 Mb. The peak performance per
node is 160 Mflops (64-bit). The maximum com-
munication rate has empirically been measured to
3.2 Mb/s between neighboring processors.

The IBM SP2 was a MIMD computer with dis-
Fig. 1: A migrated section for Case 2 of the 2-D code.

1003

D
ow

nl
oa

de
d

07
/2

6/
15

 to
 8

4.
49

.2
11

.4
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

Parallel 2-D and 3-D depth migration

Conclusion

Table 4: Benchmarking results for Case 1 of the 2-D
code

We have ported a serial code for 2-D and 3-D seis-
mic depth migration to parallel platforms. The
porting was done in a general way such that the
same code can be run on a number of parallel and
serial machines. The problem is well suited for
parallelization, so only moderate modifications of
the serial code had to be done. The results show
that an efficient parallelization of the code was ob-
tained. The execution time scales very well with
the number of processors. We consider the results
obtained for the parallelized program to be very
encouraging.

Acknowledgment

We also acknowledge partial support from the
CEC through the EUROPORT II project.

References

A. Buland, R. Sollie, and J. Amundsen. Par-
allelization of a code for seismic depth migra-
tion, volume 919 of Lecture Notes in Computer
Science, pages 910-915. Springer Verlag, 1995.

R. Mittet, R. Sollie, and K. Hokstad. Prestack
depth migration with compensation for ab-
sorption. In Expanded Abstracts, EAEG, 1994.

A. Sollid and B. Arntsen. Cost effective 3d one-
pass depth migration. Geophysical Prospect-
ing, 42:755-776, 1994.

1004

D
ow

nl
oa

de
d

07
/2

6/
15

 to
 8

4.
49

.2
11

.4
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

